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Introduction

ÅWorking principle

Å Ignition of a homogeneous natural gas/air 

mixture with diesel pilot injection

Å Ignition energy provided only by diesel

Å Premixed gas/air flame front propagation after 

autoignition of the diesel

ÅAdvantages

Å Fuel flexibility [7]

Å Possibility to operate with different gas 

compositions

Å Possibility to operate in gas mode but also in pure 

diesel mode

Å Great reduction in engine-out NOx compared to 

monovalent diesel engines [8]

Diesel ignited gas engine concept

Fig.1.: Intake and high pressurephaseof 
the diesel ignited gas engine concept [2]
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Dual fuel combustion simulation: challenges

Overview

Air/gas induction:
ü Provision of a lean, homogeneous

backgroundmixture
ü Proper representationof the flow field

Diesel pilot injection:
ü Operation of the dieselinjector in the

ballisticrange
ü Very different behavior than with a fully 

open needle 

Combustion:
ü All combustionregimesarepresent
ü Interaction of the two fuelshasto be

consideredregardingignitiondelayand
laminar flamespeed

Emissions:

Nitric oxides (NOx)

Soot

Unburned hydrocarbons

Knocking

Premixed

DiffusionAutoignition

Dual Fuel

Diesel ignited gas 
engine

Air

Gas

Fig.2.: Main challengesof dual fuel
combustionfor CFD
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Description of modeling framework

ÅModel is able to depict the three different 

combustion regimes simultaneously 

ÅMultiple fuel option implemented in the 

standard ECFM-3Z model

ÅSeveral shortcomings had to be addressed

Å Ignition delay prediction for dual fuel applications

Å Flame surface density deposition

Å Flame front propagation

Combustion models ïECFM-3Z

Fig.3.: Standard ECFM-3Z description, takenfrom [2,3]

Fig.4.: ECFM-3Z mixing model after diesel pilot 
injection [4]
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Description of modeling framework

Å Physical effect

Å The ignition delay varies with the fuel 

mixture fraction [9, 10].

Å Strong non-linear behavior of the fuel 

mixture fraction has been found with 

0D reactor simulations [1,4].

Å Numerical approach

Å Dedicated tabulation with a dual fuel 

mechanism

Improvements for the dual fuel combustion modelling 

Ignition delay 

Fig.5.: 0D simulations for different fuel fractions (top)
Selected ignition delay for one ratio with tabulation 
points (bottom)
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Description of modeling framework

Å Physical effect

Å After the diesel pilot auto ignites, flame 

front propagation starts.

Å A flame surface density has to be 

provided to the ECFM model as a starting 

value

Å Numerical approach

Å A simple relation for thermal gas 

expansion is taken from [6,7], and 

modified:

ɫ ὅᶻ​ǿὧᶻρ ὸὭ

ὸὭé turbulent intensity

Necessary modifications to the ECFM-3Z combustion model

Flame surface density deposition

Ignitable mixture

Homogeneous 
background mixture

Developed flame kernel

Diesel (liquid)

Diesel (gas)

Gas expansion Turbulence

Fig.6.: Initial flamesurfacedensitydepositionfor
dual fuel modifications
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Å Physical effect

Å Laminar flame speed varies with the fuel 

mixture fraction [6].

Å Linear behavior was found from 

numerical simulations 

[4,5].aaaaaaaaaaa

Å Numerical approach

Å Interpolation function:

Description of modeling framework

Improvements for the dual fuel combustion modelling 

Laminar flame speed

Fig.7.: 1D simulationscarriedout for the laminar flame
speedof n-heptane/methane/airmixtures
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Validation with SCE measurement data

Measurement setup

EngineConditions

Point Diesel share(energetic) [%] GlobalLambda [-] SOC

1 1.5 Lean Early

2 1.5 Lean Middle

3 1.5 Lean Late

4 1.5 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late

HardwareSummary

Ratedspeed 1500 rpm

Displacement ~ 6 liter

Swirl/tumble ~ 0/0

Charge air Providedbyexternalcompressors

Gas fuel supply Externalmixture formationvia venturimixer

Diesel injectornozzle 4 x 140° Fig.8.: Single CylinderResearch Engine
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Validation with SCE measurement data

Simulation setup

Meshing

Type ESEdieselsectormesh(90°) with refinement

No. of cells@ TDC ~ 200.000 (0.6 mm in Spray region)

No. of cells@ BDC ~ 380.000
Fig.9.: Sectormeshfor enginesimulations

General setup

Solver AVL FIRE

Temporal discretization Compression 50 us(0.5 deg @ 1500rpm)

Spray / combustion 10 us(0.1 deg @ 1500rpm)

Expansion 20 us(0.2 deg @ 1500rpm)

Turbulencemodeling RANS approach, k- -yf turbulencemodel

Spray Lagrangianapproach
ÅWAVE breakup
ÅDucowiczevaporation
ÅhΨwƻǳǊƪŜturbulent dispersion

Model calibrationaccordingto spray box tests

Combustion ECFM-3Z model
Dual fuel adjustments
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Validation with SCE measurement data

Measurement setup

EngineConditions

Point Diesel share(energetic) [%] GlobalLambda [-] SOC

1 1.5 Lean Early

2 1.5 Lean Middle

3 1.5 Lean Late

4 1.5 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late

HardwareSummary

Ratedspeed 1500 rpm

Displacement ~ 6 liter

Swirl/tumble ~ 0/0

Charge air Providedbyexternalcompressors

Gas fuel supply Externalmixture formationvia venturimixer

Diesel injectornozzle 4 x 140° Fig.10.: Single CylinderResearch Engine
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Validation with SCE measurement data

Results of diesel mass variation

Fig.11.: Pressuretraceand normalizedheatrelease
rate for the selecteddieselmassvariations
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Validation with SCE measurement data

Measurement setup

EngineConditions

Point Diesel share(energetic) [%] GlobalLambda [-] SOC

1 1.5 Lean Early

2 1.5 Lean Middle

3 1.5 Lean Late

4 1.5 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late

HardwareSummary

Ratedspeed 1500 rpm

Displacement ~ 6 liter

Swirl/tumble ~ 0/0

Charge air Providedbyexternalcompressors

Gas fuel supply Externalmixture formationvia venturimixer

Diesel injectornozzle 4 x 140° Fig.12.: Single CylinderResearch Engine



LARGE ENGINES COMPETENCE CENTER  © LEC GmbH

Dual Fuel Workshop Rostock·3D-CFD model development and validation for dual-fuel combustion ·2018-04-26  ·Slide 18

Validation with SCE measurement data

Results of early SOC

Fig.13.: ROHR and pressuretracecomparison(left)
Topdownviewinto the cylinderwith an 
isosurfaceof progressvariable (right)
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Validation with SCE measurement data

Results of middle SOC

Fig.14.: ROHR and pressuretracecomparison(left)
Topdownviewinto the cylinderwith an 
isosurfaceof progressvariable (right)
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Validation with SCE measurement data

Results of late SOC

Fig.15.: ROHR and pressuretracecomparison(left)
Topdownviewinto the cylinderwith an 
isosurfaceof progressvariable (right)
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Conclusions and further steps

ÅConclusions

Å Workflow for DF combustion modeling defined

Å Dual fuel combustion modeling improvements tested and validated on a single 

cylinder research engine

Å Optical validation showed good agreement with the simulation

ÅFurther steps

Å Generate a tabulated kinetics of ignition (TKI) database [11] for dual fuel mixtures 

based on a dedicated dual fuel mechanism

Å Generate laminar flame speeds for dual fuel mixtures based on a dedicated dual 

fuel mechanism

Å Compare ECFM-3Z results with detailed chemistry simulations
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