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Introduction (‘:

Diesel ignited gas engine concept
A Working principle Gas o Gas

]Egr?;rtilrglxture (Port fuel injection)

A Ignition of a homogeneous natural gas/air
mixture with diesel pilot injection =: ‘\
A Ignition energy provided only by diesel Air

A Premixed gas/air flame front propagation after
autoignition of the diesel O

A Advantages

A Fuel flexibility [7] ~ —

A Possibility to operate with different gas
compositions

A Possibility to operate in gas mode but also in pure
diesel mode

A Great reduction in engine-out NOx compared to O
monovalent diesel engines [8]

Fig.1.:Intake and higipressurephaseof
the diesel ignited gas engine concept [2]
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Dual fuel combustion simulation: challenges LGC

Overview

Air/gas induction:
U  Provisiorof alean homogeneous
backgroundmixture
U  Properrepresentationof the flow field

Dieselpilot injection:
U  Operationof the dieselinjectorin the
ballisticrange
U Very different behavior than with a fully
open needle

Air

Gas

Emissions

Nitric oxides (NOXx)

Soot

O

Combustion
U  Allcombustionregimesare present
U Interactionof the two fuelshasto be
consideredegardingignitiondelayand
laminarflame speed

Premixed
Dieselignited gas
engine /

Autoignition Diffusion

Fig.2.:Main challenge®f dualfuel
combustionfor CFD
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Description of modeling framework

Combustion models T ECFM-3Z

A Model is able to depict the three different
combustion regimes simultaneously

A Multiple fuel option implemented in the

standard ECFM-3Z model

A Several shortcomings had to be addressed
A Ignition delay prediction for dual fuel applications

A Flame surface density deposition

A Flame front propagation
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Flame propagation

unburned gases b = bumed gases

A = unmixed air Turbulent

(+ EGR)

M = mixed air
and fuel

F = unmixed fuel

Homogeneous
Auto-ignition reactors

}

Dnﬂus:or‘\ flame

Premixed flame
(oxidation + pollutant formation)

(oxidation)
Fig.3.:Standard ECH@Zdescription, takenfrom [2,3]

| Perfectly mixed region of fuel and air

|Mr + methane

Unmixed fuel

Fig.4..ECFM3Z mixing model after diesel pilot
injection [4]
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Description of modeling framework

Improvements for the dual fuel combustion modelling

Ignition delay

A Physical effect

A The ignition delay varies with the fuel

mixture fraction [9, 10].

A Strong non-linear behavior of the fuel
mixture fraction has been found with

0D reactor simulations [1,4].

A Numerical approach

A Dedicated tabulation with a dual fuel

mechanism

1000

Ignition delay [ms]

0,01

Dual fuel

mechanism _’l Tabulation HTDF(T»P:‘bg.!obathGR»QODF)|
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Fig.5.:0D simulations for different fuel fractions (top)
Selected ignition delay for one ratio with tabulatior
points (bottom)
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Description of modeling framework LGC
Necessary modifications to the ECFM-3Z combustion model
Flame surface density deposition

] Diesel (liquid
A Physical effect bicsel (gas)
A After the diesel pilot auto ignites, flame ~ Developed flame kem
front propagation starts. Ignitable mixtur
A Aflame surface density hastobe oo e
provided to the ECFM model as a starting
value

A Numerical approach

A A simple relation for thermal gas
expansion is taken from [6,7], and
modified:

t 82l d(p 0)Q

0O& turbulent intensity —

. ~
Gasexpansion Turbulence

Fig.6.:Initial flame surfacedensitydepositionfor
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Description of modeling framework LGC

Improvements for the dual fuel combustion modelling
Laminar flame speed

A Physical effect 300

——¢=1,8/T=1000K/p=1bar

A Laminar flame speed varies with the fuel ~#=¢=10/T=1000K/p=75bar

; : — 250 ||=—¢=10/T=800K/p=75bar
mixture fraction [6]. 2 o= 1,0/ T= 800K/ p= 150 bar
L,
A Linear behavior was found from B 00
numerical simulations &
[4,5]. 5
T 150 g
© ——
g T
A Numerical approach 100
h— ———— ——
A Interpolation function: 5o L1 —* —— - — ———t————
0 0,2 0,4 0,6 0,8 1
vmp he 9 Methane fraction of the dual fuel blend-]
Nea Ne 3
Vag Y , °Ymg Y _° A | Fig.7.:1Dsimulationscarriedout for the laminarflame

speedof n-heptand methand air mixtures
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Validation with SCE measurement data
Measurement setup

HardwareSummary

Ratedspeed 1500rpm

Displacement ~ 6liter

Swirl/tumble ~0/0

Chargeair Providedby externalcompressors

Gasfuel supply Externalmixture formation via venturi mixer

Dieselinjectornozzle 4 x 140 Fig.8.:SingleCylinderResearch Engine
Point Dieselshare(energetiq [%0] GlobalLambda] SOC
1 15 Lean Early
2 15 Lean Middle
3 15 Lean Late

4 15 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late
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Validation with SCE measurement data

Simulation setup

Type ESHlieselsectormesh(90°) with refinement
No. of cells@ TDC ~ 200.000 (0.6 mm in Spresgion)

No. of cells@ BDC ~ 380.000

Solver

Temporal discretization

Turbulencemodeling

Spray

Combustion

Fig.9.:Sectormeshfor enginesimulations

Generalsetup

7 7
T

T,
i

AVL FIRE

Compression 50us (0.5 deg @ 1500rpm)
Spray / combustion 10us (0.1 deg @ 1500rpm)
Expansion 20us(0.2 deg @ 1500rpm)

RANSpproach ky-f turbulencemodel

Lagrangiampproach

A WAVBbreakup

A Ducowiczevaporation

A h Www 2 tnkdledtdispersion
Model calibrationaccordingo spray boxests

ECFM3Zmodel
Dualfuel adjustments

LARGE ENGINES COMPETENCE CENTER © LEC GmbH

Dual Fuel Workshop Rostock - 3D-CFD model development and validation for dual-fuel combustion - 2018-04-26 -

Slide 14




Validation with SCE measurement data
Measurement setup

HardwareSummary

Ratedspeed 1500rpm

Displacement ~ 6liter

Swirl/tumble ~0/0

Chargeair Providedby externalcompressors

Gasfuel supply Externalmixture formation via venturi mixer

Dieselinjectornozzle 4 x 140 Fig.10.: SingleCylinderResearch Engine
Point Dieselshare(energetiq [%0] GlobalLambda] SOC
1 15 Lean Early
2 15 Lean Middle
3 15 Lean Late

4 15 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late
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Validation with SCE measurement data
Results of diesel mass variation

LCC

Experiment - 0.5% diesel

Simulation - 0.5% diesel
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Fig.11..Pressurdraceandnormalizedheatrelease
rate for the selecteddieselmassvariations
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Validation with SCE measurement data
Measurement setup

HardwareSummary

Ratedspeed 1500rpm

Displacement ~ 6liter

Swirl/tumble ~0/0

Chargeair Providedby externalcompressors

Gasfuel supply Externalmixture formation via venturi mixer

Dieselinjectornozzle 4 x 140 Fig.12.:SingleCylinderResearch Engine
Point Dieselshare(energetiq [%0] GlobalLambda] SOC
1 15 Lean Early
2 15 Lean Middle
3 15 Lean Late

4 15 Lean Late

5 1.0 Lean Late

6 0.5 Lean Late
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Validation with SCE measurement data
Results of early SOC

Pressure

— Experiment - Averaged pressure cycle
== == Experiment - Maximum pressure cycle
= === Experiment - Minimum pressure cycle

== == Simulation
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Crank angle [deg] Topdownviewinto the cylinderwith an
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Validation with SCE measurement data
Results of middle SOC

Pressure

— Experiment - Averaged pressure cycle
== == Experiment - Maximum pressure cycle
= === Experiment - Minimum pressure cycle

== == Simulation
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Fig.14..ROHR angdressuretrace comparison(left)
Crank angle [deg) Topdownviewinto the cylinderwith an
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Validation with SCE measurement data
Results of late SOC

Pressure

— Experiment - Averaged pressure cycle
== == Experiment - Maximum pressure cycle
= === Experiment - Minimum pressure cycle

== == Simulation
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Fig.15..ROHR angdressuretrace comparison(left)
Crank angle [deg) Topdownviewinto the cylinderwith an
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Conclusions and further steps (‘:

A Conclusions
A Workflow for DF combustion modeling defined

A Dual fuel combustion modeling improvements tested and validated on a single
cylinder research engine

A Optical validation showed good agreement with the simulation

A Further steps

A Generate a tabulated kinetics of ignition (TKI) database [11] for dual fuel mixtures
based on a dedicated dual fuel mechanism

A Generate laminar flame speeds for dual fuel mixtures based on a dedicated dual
fuel mechanism

A Compare ECFM-3Z results with detailed chemistry simulations
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